📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x1 题目详情
  • 0x2 解题思路
  • 0x3 代码实现
  • 0x4 课后总结

Was this helpful?

  1. arrays
  2. 智力题

73-Set-Matrix-Zeroes

Previous智力题Next最佳观光组合

Last updated 4 years ago

Was this helpful?

0x1 题目详情

给定一个 m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0。请使用原地算法。

测试用例:

示例 2: 输入: [ [0,1,2,0], [3,4,5,2], [1,3,1,5] ] 输出: [ [0,0,0,0], [0,4,5,0], [0,3,1,0] ]

0x2 解题思路

思路一: 这道题的难点在于原地修改。我最开始的想法时首先遍历一遍数组,把行中有0的行数记录下来,把列中有0的列数记录下来,然后再根据记录下来的行数与列数对矩阵进行置零操作。当然这并不满足题意。

思路二:

这种方式也是很巧妙奥,使用数组本身来保存哪一行或者哪一列的信息,最后统一置0。

  • 首先判断首行首列是否包含0,因为后面含0的行列数据就需要保存在首行或首列中。使用两个变量作为标记

  • 判断每个元素是否为0,如果为零,则将当前行的第一个元素置为0,将当前列的第一个元素置0,直到遍历完整个数组

  • 进行置零操作,遍历每一个元素,如果当前行首个元素为0,则将当前行所有元素置0,如果当前列首个元素为0,则将当前列所有元素置0

  • 根据先前获得标记变量来决定是否要把首行、首列置0

0x3 代码实现

思路1:

class Solution {
    public void setZeroes(int[][] matrix) {
        //用来记录包含0的行数
        List<Integer> rows=new ArrayList<>();
        //用来记录包含0的列数
        List<Integer> cols=new ArrayList<>();
        for(int i=0;i<matrix.length;i++){
            for(int j=0;j<matrix[0].length;j++){
                if(matrix[i][j]==0){
                    rows.add(i);
                    cols.add(j);
                }
            }
        }
        for(Integer elem:rows){
            for(int i=0;i<matrix[0].length;i++){
                matrix[elem][i]=0;
            }
        }
        for(Integer elem:cols){
            for(int i=0;i<matrix.length;i++){
                matrix[i][elem]=0;
            }
        }
        return;
    }
}

思路2:

class Solution {
    public void setZeroes(int[][] matrix) {
        if(matrix== null || matrix.length==0){
            return;
        }
        boolean cowFlag=false;
        boolean rolFlag=false;

        //首先查看第一行、第一列是否包含零,当然这一步是为了判断最后需不需要把首行首列全部置零
        //这步必须先做,否则后面置0操作完成后就分不清是原来就有0还是后面改的了
        for(int i=0;i<matrix[0].length;i++){
            if(matrix[0][i]==0){
                cowFlag=true;
                break;
            }
        }
        for(int i=0;i<matrix.length;i++){
            if(matrix[i][0]==0){
                rolFlag=true;
                break;
            }
        }
        //查找零
        for(int i=1;i<matrix.length;i++){
            for(int j=1;j<matrix[0].length;j++){
                if(matrix[i][j]==0){
                    matrix[0][j]=0;
                    matrix[i][0]=0;
                }
            }
        }
        //置零操作
        for(int i=1;i<matrix.length;i++){
            for(int j=1;j<matrix[0].length;j++){
                if(matrix[i][0]== 0 || matrix[0][j]==0){
                    matrix[i][j]=0;
                }
            }
        }
        //对首行进行操作
        if(cowFlag){
            for(int i=0;i<matrix[0].length;i++){
                matrix[0][i]=0;
            }
        }
        //对首列进行操作
        if(rolFlag){
            for(int i=0;i<matrix.length;i++){
                matrix[i][0]=0;
            }
        }
    }
}

0x4 课后总结

emmm,智力题。

原题链接