📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x1 题目详情
  • 0x2 解题思路
  • 0x3 代码实现
  • 0x4 课后总结

Was this helpful?

  1. arrays
  2. 几何问题

统计全为1的正方形子矩阵

0x1 题目详情

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。

测试用例:

输入:matrix = [ [0,1,1,1], [1,1,1,1], [0,1,1,1] ] 输出:15 解释: 边长为 1 的正方形有 10 个。 边长为 2 的正方形有 4 个。 边长为 3 的正方形有 1 个。 正方形的总数 = 10 + 4 + 1 = 15.

0x2 解题思路

一看到这道题,我立马想起来以前做过的一道题,在一个m*n的矩形中,找到由1构成的最大正方形的边长。跟这道题神似。那道题是用动态规划。虽然我不知道状态状态转移方程咋写出来的。但是这道题仍然可以使用求最大正方形边长的思路。

求一个矩阵中由1构成的最大正方形时:我们需要求出每个位置上所能构成的最大正方形,我们可以已当前求的位置作为正方形的右下角,来看看在右下角固定时,该位置能够构成的正方形最多有多大。

这时,能够构成的最大正方形由固定位置的左边、上边和左上角的最大正方形决定。这里可能有点抽象。在下图中,我们将固定的右下角分配为橘色。左边分配为蓝色,上边分配为绿色,左上角分配为黄色。(注意上述中所有的正方形都是在右下角固定时求来的)。

如果你看懂了如何求最大正方形边长,那么这道题肯定不会难住你。一个位置能够的子矩阵数量不就等于构成的最大正方形边长吗?没有任何转换,只要在求边长的过程中统计最大边长和就行啦。

0x3 代码实现

知道了状态转移方程,写代码就非常简单了。

$dp[i][j]=Math.min(Math.min(dp[i][j-1],dp[i-1][]j),dp[i-1][]j-1)$

时间复杂为$O(MN)$,空间复杂度为$O(MN)$,当然空间这里仍有优化的空间。

class Solution {
public int countSquares(int[][] matrix) {
    if(matrix.length==0 || matrix[0].length==0){
        return 0;
    }
    int[][] dp=new int[matrix.length+1][matrix[0].length+1];
    int result=0;
    for(int i=1;i<dp.length;i++){
        for(int j=1;j<dp[0].length;j++){
            if(matrix[i-1][j-1]==0){
                dp[i][j]=0;
            }
            else{
                dp[i][j]=Math.min(dp[i][j-1],Math.min(dp[i-1][j],dp[i-1][j-1]))+1;
            }
            if(dp[i][j]>0){
                result+=dp[i][j];
            }
        }
    }
    return result;
}
}

0x4 课后总结

我觉得吧,这个状态转义方程全靠规律总结出来的,我一般都是先写递归,然后再改成dp,这种方式简直无脑,后续遇到相关的题目我会介绍的奥。至于我为什么把它分到几何题呢,因为求最大正方形这一类题目都可以靠最大边长这个方式解...

Previous几何问题Next495-Teemo-Attacking

Last updated 4 years ago

Was this helpful?