📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x0 题目详情
  • 0x1 解题思路
  • 0x2 代码实现
  • 0x3 课后总结

Was this helpful?

  1. dynamic-programming

312-Burst-Balloons

Previous63-Unique-Paths-IINext322-Coin-Change

Last updated 4 years ago

Was this helpful?

0x0 题目详情

有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。 现在要求你戳破所有的气球。如果你戳破气球 i ,就可以获得 nums[left] nums[i] nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球left 和气球 right 就变成了相邻的气球。 求所能获得硬币的最大数量。

说明: 你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

测试用例:

示例: 输入: [3,1,5,8] 输出: 167 解释: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 315 + 358 + 138 + 181 = 167

0x1 解题思路

这道题如何按照我们先去戳爆一个气球m,然后更新气球m-1和m+1的新边界,是非常麻烦的,我目前还没有思考出行之有效的方法。

那么我们换一种思路,逆向DP。就跟递归做法一样,我们先找到递归出口。对于dp,我们可以把每一个气球都当作最后一个戳爆。比如我们把气球m当作最后一个来戳爆,那么这时总的分数就是气球m左边的分数加上气球m右边的分数再加上气球m作为最后一个戳爆的分数。

可以看到,气球分数的区间是有界的。如果此时气球m所在分数区间为[left,right],那么气球m作为最后一个戳爆的分数就是nums[left-1]*nums[m]*nums[right+1]。这里求m的分数用到了区间[left,right]之外的数据。

0x2 代码实现

递归版本:

class Solution {
    public int maxCoins(int[] nums) {
        if(nums==null || nums.length==0){
            return 0;
        }
        return recur(nums,0,nums.length-1);

    }

    //左闭右闭区间,返回在这个区间内的最高得分
    private int recur(int[] nums,int left,int right){

        if(left>right){
            return 0;
        }
        if(left==right){
            return (left-1<0?1:nums[left-1])*nums[left]*(right+1>=nums.length?1:nums[right+1]);
        }

        int result=Integer.MIN_VALUE;
        for(int i=left;i<=right;i++){
            result=Math.max(result,(left-1<0?1:nums[left-1])*nums[i]*(right+1>=nums.length?1:nums[right+1])+
            recur(nums,left,i-1)+recur(nums,i+1,right));
        }
        return result;
    }
}

动态规划版本:

class Solution {
    public int maxCoins(int[] nums) {
        if(nums==null || nums.length==0){
            return 0;
        }
        return recur(nums,0,nums.length-1);

    }

    //左闭右闭区间,返回在这个区间内的最高得分
    private int recur(int[] nums,int left,int right){
        if(left==right){
            return nums[left];
        }
        int[][] dp=new int[nums.length][nums.length];
        int length=nums.length;
        dp[0][0]=nums[0]*nums[1];
        dp[length-1][length-1]=nums[length-1]*nums[length-2];
        for(int i=1;i<nums.length-1;i++){
            dp[i][i]=nums[i-1]*nums[i]*nums[i+1];
        }

        for(int j=1;j<length;j++){
            for(int i=j-1;i>-1;i--){
                for(int q=i;q<=j;q++){
                    dp[i][j]=Math.max(dp[i][j],(i-1<0?1:nums[i-1])*nums[q]*(j+1>=length?1:nums[j+1])+
                    (i>q-1?0:dp[i][q-1])+(q+1>j?0:dp[q+1][j]));
                }
            }
        }
        return dp[0][length-1];
    }
}

0x3 课后总结

对于将递归改成动态规划的题目,对于改的过程我们需要注意以下几个问题:

  1. 我们要注意递归求解的方向。比如我们拥有二维dp数组。我们需要思考递归的过程在从上到下用这张表还是从左到右?

  2. 得出递归使用表的方向后,在动态规划中填充表的顺序是与递归相反的!!!

原题链接