📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x0 题目详情
  • 0x1 解题思路
  • 0x2 代码实现
  • 0x3 课后总结

Was this helpful?

  1. dynamic-programming

72-Edit-Distance

Previous120-TriangleNextHouse-Robber-series

Last updated 4 years ago

Was this helpful?

0x0 题目详情

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符

测试用例:

示例 1: 输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

示例 2: 输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')

0x1 解题思路

好题啊好题。算是一道比较经典的题目了。求最小编辑距离也是从比对字符的角度开始的。我们需要从后往前求最小编辑距离。我们需要设立两个参数m与n:分别表示第一个字符串和第二个字符串还需要编辑的距离。

  • 如果下标m与n所指向的字符相等:例如xyg-->efg:因为最后一个字符是相等的,那么就不需要编辑。那么xyg-->efg的最小编辑距离等价于xy-->ef(后文将使用===表示最小编辑距离的等价,并且这条法则代号法则1)

  • 如果下标m与n所指向的字符是不相等的:例如xyz-->efg那么我们就需要通过三种操作变换一下求出编辑距离:

    • 替换操作:将xyz中的最后一个字符替换为g,那么xyz-->efg===xyg-->efg+1。又由第一种情况可以推算至如下结果:xyg-->efg+1===xy--->ef+1

    • 删除操作:将xyz中的最后一个字符删除,那么有xyz-->efg===xy-->efg+1

    • 增加操作:在xyz最后一个位置之后添加字符g(为什么添加g?因为添加别的字符又需要通过替换操作增加一次编辑距离),那么有xyz-->efg===xyzg-->efg+1,那么又通过法则1有:xyzg-->efg+1===xyz-->ef+1

      注:上述三种情况都有可能发生,所以最后的结果三者之中取最小

  • 当字符串1还需要编辑的字符数m为零时,那么n就是还需要的编辑次数。同理,当字符串2还需要编辑的字符数n为0时,那么m就是还需要的编辑次数(通过添加操作)。

通过上述规则,递归函数就很容易写出来了。随机递归状态变化的参数m和n分别表示字符串1和字符串2还需要编辑的字符数。返回值为最小编辑次数。递归出口就是m==0或者n==0

0x2 代码实现

递归版本:

class Solution {
    public int minDistance(String word1, String word2) {
        if(word1==null || word2==null){
            throw new IllegalArgumentException("strings can not be null!");
        }
        char[] chr1=word1.toCharArray();
        char[] chr2=word2.toCharArray();
        return recur(chr1,chr2,chr1.length,chr2.length);
    }

    private int recur(char[] chr1,char[] chr2,int m,int n){
        if(m==0){
            return n;
        }else if(n==0){
            return m;
        }else if(chr1[m-1]==chr2[n-1]){
            return recur(chr1,chr2,m-1,n-1);
        }
        else{
            int first=recur(chr1,chr2,m,n-1)+1;
            int second=recur(chr1,chr2,m-1,n-1)+1;
            int thrid=recur(chr1,chr2,m-1,n)+1;
            return Math.min(first,Math.min(second,thrid));
        }
    }
}

动态规划版本:进行设置已知答案时,有一点需要注意。比如当m等于0时,此时最小的编辑次数是本次递归传进来的参数n。而不是整个字符串2的长度n。每个递归函数传进去的n都不相同。所以当m==0时,不能将第一行的数据dp[0][i]都设置为n。

class Solution {
    public int minDistance(String word1, String word2) {
        if(word1==null || word2==null){
            throw new IllegalArgumentException("strings can not be null!");
        }
        char[] chr1=word1.toCharArray();
        char[] chr2=word2.toCharArray();
        return recur(chr1,chr2,chr1.length,chr2.length);
    }

    private int recur(char[] chr1,char[] chr2,int m,int n){
        int[][] dp=new int[m+1][n+1];
        //这里设置已知答案时要注意,要设置成每次递归传进去的值
        for(int i=0;i<=n;i++){
            dp[0][i]=i;
        }
        for(int i=0;i<=m;i++){
            dp[i][0]=i;
        }
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){

                if(chr1[i-1]==chr2[j-1]){
                    dp[i][j]=dp[i-1][j-1];
                }else{
                    dp[i][j]=dp[i][j-1]+1;
                    dp[i][j]=Math.min(dp[i][j],dp[i-1][j-1]+1);
                    dp[i][j]=Math.min(dp[i][j],dp[i-1][j]+1);
                }
            }
        }
        return dp[m][n];
    }
}

0x3 课后总结

经典题目:最小编辑距离!!!

原题链接