📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x0 题目详情
  • 0x1 解题思路
  • 0x2 代码实现
  • 0x3 课后总结

Was this helpful?

  1. dynamic-programming

97-Interleaving-String

Previous32-Longest-Valid-ParenthesesNext354-Russian-Doll-Envelopes

Last updated 4 years ago

Was this helpful?

0x0 题目详情

给定三个字符串 s1, s2, s3, 验证 s3 是否是由 s1 和 s2 交错组成的。

测试用例:

示例 1: 输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac" 输出:true

示例 2: 输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc" 输出:false

0x1 解题思路

前提条件就是s1的长度与s2的长度之和等于s3的长度。否则不可能匹配成功。

然后可以维护三个指针i、j、k分别指向字符串s1、s2、s3。递归的选择s1、s2中的字符来匹配s3中的字符:

  • 如果i指向的字符匹配成功了k指向的字符,那么就选择i指向字符,i++,k++

  • 如果j指向的字符匹配成功了k指向的字符,那么就选择j指向字符,j++,k++

两种情况有一个返回true就可以直接返回了,或者两种情况都遍历完一起返回也没有问题。当然前者速度可能快一点点。如果k走到了尽头,也就是s3的长度,那么就说明匹配成功。

这是最普通的做法,需要三个指针,我们可以将k这个指针使用i+j优化掉,i+j表示s3中已经匹配的长度,dp数组由三维转向了二维。

Extension:

这道题还可以通过第64题的思路求解,这里借:

可以看到,就是在二维数组中找到一条路径符合目标字符串。每次走的方向只能选择向下或者向右。

于是可定义 boolean[][] dp ,dp[i][j] 代表 s1 前 i 个字符与 s2 前 j 个字符拼接成 s3 的 i+j 字符,也就是存在目标路径能够到达 i ,j ; 状态方程:

边界 1:dp[0][0] = true; 边界 2:if i=0 : dp[0]dp[j] = s2[0-j) equals s3[0,j) 遇到 false 后面可以直接省略 边界 3:if j=0 : dp[i]dp[0] = s1[0-i) equals s3[0,i) 遇到 false 后面可以直接省略

其他情况,到达(i,j)可能由(i-1,j)点向下一步,选择 s1[i-1] 到达;也可能由 (i,j-1) 点向右一步,选择 s2[j-1] 到达; dp[i,j] = (dp[i-1][j] &&s3[i+j-1] == s1[i-1]) || (dp[i][j-1] && s3[i+j-1] == s2[j-1])

0x2 代码实现

最普通的做法,三个指针,注释部分是原始递归代码:

class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        if(s1==null ||s2==null || s3==null){
            return false;
        }
        if(s1.length()+s2.length() !=s3.length()){
            return false;
        }
        return recur(s1,s2,s3,0,0,0);
    }
    private boolean recur(String s1,String s2,String s3,int i,int j,int k){
        boolean[][][] dp=new boolean[s3.length()+1][s1.length()+1][s2.length()+1];
        int row=s1.length();
        int col=s2.length();
        int high=s3.length();
        for(int x=0;x<=row;x++){
            for(int y=0;y<=col;y++){
                dp[high][x][y]=true;
            }
        }
        // if(k==s3.length()){
        //     return true;
        // }
        for(int z=s3.length()-1;z>-1;z--){
            for(int x=s1.length();x>-1;x--){
                for(int y=s2.length();y>-1;y--){
                    if(x<s1.length() && s1.charAt(x)==s3.charAt(z)){
                        dp[z][x][y]=dp[z+1][x+1][y];
                    }
                    if(dp[z][x][y]){
                        continue;
                    }
                    if(y<s2.length() && s2.charAt(y)==s3.charAt(z)){
                        dp[z][x][y]=dp[z+1][x][y+1];
                    }
                }
            }
        }
        return dp[0][0][0];
        // boolean result=false;
        // if(i<s1.length() && s1.charAt(i)==s3.charAt(k)){
        //     result=recur(s1,s2,s3,i+1,j,k+1);
        // }
        // if(result){
        //     return result;
        // }
        // if(j<s2.length() && s2.charAt(j)==s3.charAt(k)){
        //     result=recur(s1,s2,s3,i,j+1,k+1);
        // }
        // return result;
    }
}

优化做法,只有两个指针,注释部分也为原始递归代码:

class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        if(s1==null ||s2==null || s3==null){
            return false;
        }
        if(s1.length()+s2.length() !=s3.length()){
            return false;
        }
        return recur(s1,s2,s3);
    }
    private boolean recur(String s1,String s2,String s3){

        boolean[][] dp=new boolean [s1.length()+1][s2.length()+1];
        int m=s1.length();
        int n=s2.length();
        dp[m][n]=true;
        for(int i=n-1;i>-1;i--){
            if(s2.charAt(i)==s3.charAt(m+i)){
                dp[m][i]=dp[m][i+1];
            }
        }
        for(int i=m-1;i>-1;i--){
            if(s1.charAt(i)==s3.charAt(n+i)){
                dp[i][n]=dp[i+1][n];
            }
        }
        for(int i=m-1;i>-1;i--){
            for(int j=n-1;j>-1;j--){
                if(s1.charAt(i)==s3.charAt(i+j)){
                    dp[i][j]=dp[i+1][j];
                }
                if(!dp[i][j] && s2.charAt(j)==s3.charAt(i+j)){
                    dp[i][j]=dp[i][j+1];
                }
            }
        }
        return dp[0][0];
        // if(i+j==s3.length()){
        //     return true;
        // }
        // boolean result=false;
        // if(i<s1.length() && s1.charAt(i)==s3.charAt(i+j)){
        //     result=recur(s1,s2,s3,i+1,j);
        // }
        // if(result){
        //     return result;
        // }
        // if(j<s2.length() && s2.charAt(j)==s3.charAt(i+j)){
        //     result=recur(s1,s2,s3,i,j+1);
        // }
        // return result;
    }
}

0x3 课后总结

字符串的暴力递归我怎么就是想不到呢???

更新: 现在对字符串的相关暴力递归好像有点感觉了,一般都是查看每个字符是否符合规则,不符合怎么样,符合怎么样,直到将整个字符串遍历完成,大致都差不多是这个方向。

作者:gousiqi 链接: 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

原题链接
最小路径和
一张图
https://leetcode-cn.com/problems/interleaving-string/solution/lei-si-lu-jing-wen-ti-zhao-zhun-zhuang-tai-fang-ch/
mininum-path-sum