📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x1 题目详情
  • 0x2 解题思路
  • 0x3 代码实现
  • 0x4 课后总结

Was this helpful?

  1. greedy

56-Merge-Intervals

PreviousgreedyNext55-Jump-Game

Last updated 4 years ago

Was this helpful?

0x1 题目详情

》给出一个区间的集合,请合并所有重叠的区间。

测试用例:

示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6]. 示例 2:

输入: [[1,4],[4,5]] 输出: [[1,5]] 解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。

0x2 解题思路

这题又是贪心了,这题二进宫了,因为做了一次,所以知道怎么搞。这里需要根据区间的左端点排序,如果两个区间能够合并,排序两个区间一定挨在一起。 可以根据结果集中的最后一组数据与当前处理数据进行判断并合并。这里肯定会产生很多问题,为什么需要对区间的左端点排序,怎么想出来的?

首先这道题是区间类的题目,对于几何问题,一般都需要写写画画打下草稿。还需要打打草稿的比如:

  • 几何类

  • 物理类

  • 递归路径树类

至于为什么选择要对区间的左端点排序,说实话,我也不知道,靠直觉,贪心就是靠直觉。

0x3 代码实现

时间复杂度为$O(NlogN)$,空间复杂度最坏为$O(N)$,也就是没有区间合并。

class Solution {
    public int[][] merge(int[][] intervals) {

        if(intervals==null){
            return null;
        }
        Arrays.sort(intervals,new Comparator<int[]>(){
            public int compare(int[] lhs,int[] rhs){
                return lhs[0]-rhs[0];
            }
        });

        ArrayList<int[]> result=new ArrayList<>();
        result.add(intervals[0]);
        for(int i=0;i<intervals.length;i++){

            //获得最后一个元素
            int[] lastElem=result.get(result.size()-1);
            //不需要合并时,直接加入结合
            if(lastElem[1]<intervals[i][0]){

                result.add(intervals[i]);
            }else{
                lastElem[1]=Math.max(lastElem[1],intervals[i][1]);
            }
        }
        return result.toArray(new int[result.size()][]);
    }
}

0x4 课后总结

贪心这种思想吧,只要能想出来,代码很简单的,关键是贪心策略不好想啊。

使用贪心策略的前提是:局部最优解可能会产生全局最优解。并且贪心策略是无后效性的,即我们怎么到达当前状态的与后续的状态选择没有关系。在考虑是否使用贪心时有两个维度:

  • 具备局部最优解可能会产生全局最优解的特点

  • 找不到反例,但是又不能推翻当前的策略,那么就可以尝试使用贪心。

证明贪心是非常困难的,但是推翻当前策略却只需要一个反例。

贪心算法的应用

  • 对数据压缩编码的霍夫曼编码(Huffman Coding)

  • 求最小生成树的 Prim 算法和 Kruskal 算法

  • 求单源最短路径的Dijkstra算法

原题链接
参考链接