📉
leetcode-题解
  • leetcode-notes
  • linked-list
    • 2-Add-Two-Numbers
    • 109-Convert-Sorted-List-to-Binary-Search-Tree
    • 19-Remove-Nth-Node-From-End-of-List
    • 92-Reverse-Linked-List-II
    • 142-Linked-List-Cycle-II
    • 83-Remove-Duplicates-from-Sorted-List
    • 61-Rotate-List
    • 148-Sort-List
    • 86-Partition-List
    • 82-Remove-Duplicates-from-Sorted-List-II
    • 138-Copy-List-with-Random-Pointer
    • 328-Odd-Even-Linked-List
    • 23- Merge-k-Sorted-Lists
    • 25-Reverse-Nodes-in-k-Group
  • templates
    • bitmap
    • ologn
    • Morris
    • dp
    • binary-search
    • Maxwindow
    • 递归
    • union
    • graph
    • greedy-algorithm
    • kmp
    • list
    • ordered-list
    • tree
    • Manacher
    • Monotonic-stack
    • big-data
    • sort-Summary
    • Bucket-sort
    • bit-opreation
    • heap-sort
  • arrays
    • others
      • 31-Next-Permutation
      • 66-Plus- One
      • 229-Majority-Element-II
      • 414-Third-Maximum-Number
    • matrix
      • 74-Search-a-2D-Matrix
      • 289-Game-of-Life
    • PrefixOrSuffix
      • 560-Subarray-Sum-Equals-K
      • 238-Product-of-Array-Except-Self
    • 二分法
      • rotated-array-problem
      • D天内送达包裹的能力
      • 162-Find-Peak-Element
      • Minimize-maximum-and-maximize-minimum
    • 多指针
      • 611-Valid-Triangle-Number
      • 228-Summary-Ranges
      • 75-Sort-Colors
      • 18-4Sum
      • 27-Remove-Element
      • 三数之和
      • 26-Remove-Duplicates-from-Sorted-Array
      • 盛最多水的容器
      • 80-Remove-Duplicates-from-Sorted-Array-II
      • 最接近的三数之和
    • array-circle
      • 457-Circular-Array-Loop
      • 287-Find-the-Duplicate-Number
      • 565-Array-Nesting
    • 智力题
      • 73-Set-Matrix-Zeroes
      • 最佳观光组合
    • 几何问题
      • 统计全为1的正方形子矩阵
      • 495-Teemo-Attacking
    • sort
      • 88-Merge-Sorted-Array
      • 57-Insert-Interval
  • tree
    • 105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal
    • 230-Kth-Smallest-Element in-a-BST
    • 106-Construct-Binary-Tree-from-Inorder-and-Postorder-Traversal
    • 257-Binary-Tree-Paths
    • 113-Path-Sum-II
    • 96-Unique-Binary-Search-Trees
    • 124-Binary-Tree-Maximum-Path-Sum
    • 103-Binary-Tree-Zigzag-Level-Order-Traversal
    • 426-Convert-Binary-Search-Tree-to-Sorted-Doubly-Linked-List
    • 117-Populating-Next-Right-Pointers-in-Each-Node-II
    • 99-Recover-Binary-Search-Tree
    • 366-Find-Leaves-of-Binary-Tree
    • 337-House-Robber-III
    • 333-Largest-BST-Subtree
    • 298-Binary-Tree-Longest-Consecutive-Sequence
    • 428-Serialize-and-Deserialize-N-ary-Tree
    • 1367-Linked-List-in-Binary-Tree
    • 173-Binary-Search-Tree-Iterator
    • 98-Validate-Binary-Search-Tree
    • 156-Binary-Tree-Upside-Down
    • 404-Sum-of-Lef- Leaves
    • 255-Verify-Preorder-Sequence-in-Binary-Search-Tree
    • 272-Closest-Binary-Search-Tree-Value-II
    • 95-Unique-Binary-Search-Trees-II
    • 222-Count-Complete-Tree-Nodes
    • 431-Encode-N-ary-Tree to-Binary-Tree
    • Lowest-Common-Ancestor-of-a-Binary-Tree
    • 129-Sum-Root-to-Leaf-Numbers
  • recursive
    • 前言
    • 39-Combination-Sum
    • 79-Word-Search
    • 04-Power-Set-LCCI
    • 前言
    • 90-Subsets-II
    • 40-Combination-Sum-II
    • 351-Android-Unlock-Patterns
  • dynamic-programming
    • 276-Paint-Fence
    • 132-Palindrome-Partitioning-II
    • 361-Bomb-Enemy
    • 62-Unique-Paths
    • 376-Wiggle-Subsequence
    • 403-Frog-Jump
    • 32-Longest-Valid-Parentheses
    • 97-Interleaving-String
    • 354-Russian-Doll-Envelopes
    • 279-Perfect-Squares
    • 304-Range-Sum-Query-2D-Immutable
    • 10-Regular-Expression-Matching
    • Paint-House-series
    • 139-Word-Break
    • Best-Time-to-Buy-and-Sell-Stock-series
    • 416-Partition-Equal-Subset-Sum
    • 300-Longest-Increasing-Subsequence
    • 91-Decode-Ways
    • Ugly-Number-series
    • 363-Max-Sum-of-Rectangle-No-Larger-Than-K
    • 368-Largest-Divisible-Subset
    • 63-Unique-Paths-II
    • 312-Burst-Balloons
    • 322-Coin-Change
    • 64-Minimum-Path-Sum
    • 140-Word-Break-II
    • 120-Triangle
    • 72-Edit-Distance
    • House-Robber-series
    • 413-Arithmetic-Slices
    • 174-Dungeon-Game
    • 87-Scramble-String
    • 44-Wildcard-Matching
    • 338-Counting-Bits
    • 152-Maximum-Product-Subarray
    • 375-Guess-Number-Higher-or-Lower-II
  • hash-table
    • 381-Insert-Delete-GetRandom-O(1) - Duplicates-allowed
    • 442-Find-All-Duplicates-in-an-Array
    • 380-Insert-Delete-GetRandom-O(1)
    • 1-Two-Sum
    • 3-Longest-Substring-Without-Repeating-Characters
    • 41-First-Missing-Positive
  • stack
    • Monotonic stack
      • 84-Larges-Rectangle-in-Histogram
      • 42-Trapping-Rain-Water
  • bit-manipulation
    • 08-Draw-Line-LCCI
  • Mysql
    • 185-Department-Top-Three-Salaries
    • 177-N-Highest-Salary
    • 178-Rank-Scores
    • 180-Consecutive-Numbers
  • greedy
    • 56-Merge-Intervals
    • 55-Jump-Game
    • 53-Maximum-Subarray
  • math
    • 357-Count-Numbers-with-Unique-Digits
    • 343-Integer-Break
    • 119-Pascal's-Triangle-II
  • string
    • Palindrome
      • 5-Longest-Palindromic-Substring
      • Manacher
  • sliding-window
    • 209-Minimum-Size-Subarray-Sum
Powered by GitBook
On this page
  • 0x0 题目详情
  • 0x1 解题思路
  • 0x2 代码实现
  • 0x3 课后总结

Was this helpful?

  1. dynamic-programming

361-Bomb-Enemy

Previous132-Palindrome-Partitioning-IINext62-Unique-Paths

Last updated 4 years ago

Was this helpful?

0x0 题目详情

想象一下炸弹人游戏,在你面前有一个二维的网格来表示地图,网格中的格子分别被以下三种符号占据: 'W' 表示一堵墙 'E' 表示一个敌人 '0'(数字 0)表示一个空位

请你计算一个炸弹最多能炸多少敌人。 由于炸弹的威力不足以穿透墙体,炸弹只能炸到同一行和同一列没被墙体挡住的敌人。 注意:你只能把炸弹放在一个空的格子里

测试用例:

示例: 输入: [["0","E","0","0"],["E","0","W","E"],["0","E","0","0"]] 输出: 3 解释: 对于如下网格

0 E 0 0 E 0 W E 0 E 0 0

假如在位置 (1,1) 放置炸弹的话,可以炸到 3 个敌人

0x1 解题思路

这道题暴力递归还是很简单的。首先我们需要遍历每一个位置,看看它能不能放炸弹。如果能放炸弹,我们就遍历该位置的上下左右四个方向。因为递归遍历时需要方向信息,所以递归函数需要额外添加一个方向参数。

注意:如果有[E,0,E,0]这种情况,在最右边放置炸弹是可以炸到最左边的人的

至于动态规划,可以照着上面的递归改改,但是很慢,不知道为什么。

0x2 代码实现

自己实现的暴力递归:

class Solution {

    public int maxKilledEnemies(char[][] grid) {
        if(grid==null || grid.length==0 || grid[0].length==0){
            return 0;
        }

        int result=0;
        int[][][] dp=new int[4][grid.length][grid[0].length];
        recur(grid,dp);
        for(int i=0;i<grid.length;i++){
            for(int j=0;j<grid[0].length;j++){
                if(grid[i][j]=='W'|| grid[i][j]=='E'){
                    continue;
                }
                result=Math.max(result,recur(grid,i-1,j,0)+recur(grid,i+1,j,1)+recur(grid,i,j-1,2)+recur(grid,i,j+1,3));

            }
        }
        return result;

    }
    private void recur(char[][] grid,int row,int col,int flag){


        if(row<0 || row>=grid.length || col<0 || col>=grid[0].length){
            return 0;
        }
        int result=0;
        if(grid[row][col]=='W'|| grid[row][col]=='0'){
            return 0;
        }
        else{
            switch(flag){
                case 0:
                    result= recur(grid,row-1,col,0)+1;
                    break;
                case 1:
                    result= recur(grid,row+1,col,1)+1;
                    break;
                case 2:
                    result= recur(grid,row,col-1,2)+1;
                    break;
                case 3:
                    result= recur(grid,row,col+1,3)+1;
                    break;
            }
        }
        return result;
    }
}

动态规划版本:

class Solution {

    public int maxKilledEnemies(char[][] grid) {
        if(grid==null || grid.length==0 || grid[0].length==0){
            return 0;
        }

        int result=0;
        int[][][] dp=new int[4][grid.length][grid[0].length];
        recur(grid,dp);
        for(int i=0;i<grid.length;i++){
            for(int j=0;j<grid[0].length;j++){
                if(grid[i][j]=='W'|| grid[i][j]=='E'){
                    continue;
                }

                result=Math.max(result,search(dp,0,i-1,j)+search(dp,1,i+1,j)+search(dp,2,i,j-1)+search(dp,3,i,j+1));
            }
        }
        return result;


    }
    private int search(int[][][] dp,int flag,int row,int col){
        if(row<0 ||row>=dp[0].length || col<0 || col>=dp[0][0].length){
            return 0;
        }
        return dp[flag][row][col];
    }
    private void recur(char[][] grid,int[][][] dp){

        int m=grid.length;
        int n=grid[0].length;
        for(int j=0;j<n;j++){
            for(int i=0;i<m;i++){
                if(grid[i][j]=='W'){
                    continue;
                }else if(grid[i][j]=='0'){
                    dp[0][i][j]=i-1<0?0:dp[0][i-1][j];  
                }else{
                    dp[0][i][j]=i-1<0?1:dp[0][i-1][j]+1; 
                }

            }
        }
        for(int j=0;j<n;j++){
            for(int i=m-1;i>-1;i--){
                if(grid[i][j]=='W'){
                    continue;
                }
                else if(grid[i][j]=='0'){
                    dp[1][i][j]=i+1>=m?0:dp[1][i+1][j];  
                }else{
                    dp[1][i][j]=i+1>=m?1:dp[1][i+1][j]+1; 
                }

            }
        }
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(grid[i][j]=='W'){
                    continue;
                }
                else if(grid[i][j]=='0'){
                    dp[2][i][j]=j-1<0?0:dp[2][i][j-1];  
                }else{
                    dp[2][i][j]=j-1<0?1:dp[2][i][j-1]+1; 
                }
            }
        }
        for(int i=0;i<m;i++){
            for(int j=n-1;j>-1;j--){
                if(grid[i][j]=='W'){
                    continue;
                }
                else if(grid[i][j]=='0'){
                    dp[3][i][j]=j+1>=n?0:dp[3][i][j+1];  
                }else{
                    dp[3][i][j]=j+1>=n?1:dp[3][i][j+1]+1; 
                }  
            }
        }


    }
}

然而我看到别人的暴力求解根本不需要递归:

class Solution {
  public int maxKilledEnemies(char[][] grid) {
        int max = 0;
        for (int i = 0; i < grid.length; i++) {
            for (int j = 0; j < grid[0].length; j++) {
                int count = 0;
                if (grid[i][j] == '0') {
                    // 上下搜索
                    int up = i - 1;
                    int down = i + 1;
                    // 向上搜索
                    while (up >= 0) {
                        if (grid[up][j] == 'W') {
                            break;
                        }
                        if (grid[up][j] == 'E') {
                            count++;
                        }
                        up--;

                    }
                    // 向下搜索
                    while (down < grid.length) {
                        if (grid[down][j] == 'W') {
                            break;
                        }
                        if (grid[down][j] == 'E') {
                            count++;
                        }
                        down++;
                    }
                    // 左右搜索
                    int left = j - 1;
                    int right = j + 1;
                    while (left >= 0) {
                        if (grid[i][left] == 'W') {
                            break;
                        }
                        if (grid[i][left] == 'E') {
                            count++;
                        }
                        left--;

                    }
                    // 向下搜索
                    while (right < grid[0].length) {
                        if (grid[i][right] == 'W') {
                            break;
                        }
                        if (grid[i][right] == 'E') {
                            count++;
                        }
                        right++;
                    }
                    max = Math.max(count, max);
                }
            }
        }
        return max;
    }
}

0x3 课后总结

有时候暴力求解不一定需要用到递归奥。

原题链接
361